Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
PLoS Genet ; 19(2): e1010622, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36730442

RESUMO

The Epidermal Growth Factor Receptor (EGFR) signaling pathway plays a critical role in regulating tissue patterning. Drosophila EGFR signaling achieves specificity through multiple ligands and feedback loops to finetune signaling outcomes spatiotemporally. The principal Drosophila EGF ligand, cleaved Spitz, and the negative feedback regulator, Argos are diffusible and can act both in a cell autonomous and non-autonomous manner. The expression dose of Spitz and Argos early in photoreceptor cell fate determination has been shown to be critical in patterning the Drosophila eye, but the exact identity of the cells expressing these genes in the larval eye disc has been elusive. Using single molecule RNA Fluorescence in situ Hybridization (smFISH), we reveal an intriguing differential expression of spitz and argos mRNA in the Drosophila third instar eye imaginal disc indicative of directional non-autonomous EGFR signaling. By genetically tuning EGFR signaling, we show that rather than absolute levels of expression, the ratio of expression of spitz-to-argos to be a critical determinant of the final adult eye phenotype. Proximate effects on EGFR signaling in terms of cell cycle and differentiation markers are affected differently in the different perturbations. Proper ommatidial patterning is robust to thresholds around a tightly maintained wildtype spitz-to-argos ratio, and breaks down beyond. This provides a powerful instance of developmental buffering against gene expression fluctuations.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Hibridização in Situ Fluorescente , Fator de Crescimento Epidérmico/genética , Transdução de Sinais/genética , Olho/metabolismo , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo
2.
Curr Biol ; 33(3): 517-532.e5, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36640763

RESUMO

The development of neuronal connectivity requires stabilization of dynamic axonal branches at sites of synapse formation. Models that explain how axonal branching is coupled to synaptogenesis postulate molecular regulators acting in a spatiotemporally restricted fashion to ensure branching toward future synaptic partners while also stabilizing the emerging synaptic contacts between such partners. We investigated this question using neuronal circuit development in the Drosophila brain as a model system. We report that epidermal growth factor receptor (EGFR) activity is required in presynaptic axonal branches during two distinct temporal intervals to regulate circuit wiring in the developing Drosophila visual system. EGFR is required early to regulate primary axonal branching. EGFR activity is then independently required at a later stage to prevent degradation of the synaptic active zone protein Bruchpilot (Brp). Inactivation of EGFR results in a local increase of autophagy in presynaptic branches and the translocation of active zone proteins into autophagic vesicles. The protection of synaptic material during this later interval of wiring ensures the stabilization of terminal branches, circuit connectivity, and appropriate visual behavior. Phenotypes of EGFR inactivation can be rescued by increasing Brp levels or downregulating autophagy. In summary, we identify a temporally restricted molecular mechanism required for coupling axonal branching and synaptic stabilization that contributes to the emergence of neuronal wiring specificity.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Axônios/fisiologia , Drosophila/genética , Receptores ErbB/metabolismo , Autofagia , Sinapses/fisiologia , Receptores de Peptídeos de Invertebrados/metabolismo
3.
Curr Biol ; 32(17): 3704-3719.e7, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35896119

RESUMO

EGFR-RAS-ERK signaling promotes growth and proliferation in many cell types, and genetic hyperactivation of RAS-ERK signaling drives many cancers. Yet, despite intensive study of upstream components in EGFR signal transduction, the identities and functions of downstream effectors in the pathway are poorly understood. In Drosophila intestinal stem cells (ISCs), the transcriptional repressor Capicua (Cic) and its targets, the ETS-type transcriptional activators Pointed (pnt) and Ets21C, are essential downstream effectors of mitogenic EGFR signaling. Here, we show that these factors promote EGFR-dependent metabolic changes that increase ISC mass, mitochondrial growth, and mitochondrial activity. Gene target analysis using RNA and DamID sequencing revealed that Pnt and Ets21C directly upregulate not only DNA replication and cell cycle genes but also genes for oxidative phosphorylation, the TCA cycle, and fatty acid beta-oxidation. Metabolite analysis substantiated these metabolic functions. The mitochondrial transcription factor B2 (mtTFB2), a direct target of Pnt, was required and partially sufficient for EGFR-driven ISC growth, mitochondrial biogenesis, and proliferation. MEK-dependent EGF signaling stimulated mitochondrial biogenesis in human RPE-1 cells, indicating the conservation of these metabolic effects. This work illustrates how EGFR signaling alters metabolism to coordinately activate cell growth and cell division.


Assuntos
Proteínas de Drosophila , Animais , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Proteínas do Tecido Nervoso , Biogênese de Organelas , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
4.
Elife ; 112022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468055

RESUMO

Adult stem cells are maintained in niches, specialized microenvironments that regulate their self-renewal and differentiation. In the adult Drosophila testis stem cell niche, somatic hub cells produce signals that regulate adjacent germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Hub cells are normally quiescent, but after complete genetic ablation of CySCs, they can proliferate and transdifferentiate into new CySCs. Here we find that Epidermal growth factor receptor (EGFR) signaling is upregulated in hub cells after CySC ablation and that the ability of testes to recover from ablation is inhibited by reduced EGFR signaling. In addition, activation of the EGFR pathway in hub cells is sufficient to induce their proliferation and transdifferentiation into CySCs. We propose that EGFR signaling, which is normally required in adult cyst cells, is actively inhibited in adult hub cells to maintain their fate but is repurposed to drive stem cell regeneration after CySC ablation.


Assuntos
Cistos , Proteínas de Drosophila , Animais , Transdiferenciação Celular , Cistos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Masculino , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Células-Tronco/fisiologia , Testículo/metabolismo , Microambiente Tumoral
5.
Stem Cell Reports ; 17(5): 1120-1137, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35427486

RESUMO

Adult tissue homeostasis is maintained by residential stem cells. The proliferation and differentiation of adult stem cells must be tightly balanced to avoid excessive proliferation or premature differentiation. However, how stem cell proliferation is properly controlled remains elusive. Here, we find that auxilin (Aux) restricts intestinal stem cell (ISC) proliferation mainly through EGFR signaling. aux depletion leads to excessive ISC proliferation and midgut homeostasis disruption, which is unlikely caused by defective Notch signaling. Aux is expressed in multiple types of intestinal cells. Interestingly, aux depletion causes a dramatic increase in EGFR signaling, with a strong accumulation of EGFR at the plasma membrane and an increased expression of EGFR ligands in response to tissue stress. Furthermore, Aux co-localizes and associates with EGFR. Finally, blocking EGFR signaling completely suppresses the defects caused by aux depletion. Together, these data demonstrate that Aux mainly safeguards EGFR activation to keep a proper ISC proliferation rate to maintain midgut homeostasis.


Assuntos
Proteínas de Drosophila , Animais , Auxilinas/metabolismo , Proliferação de Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Receptores ErbB/metabolismo , Intestinos , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo
6.
Cell Prolif ; 55(1): e13173, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34952996

RESUMO

OBJECTIVES: Adult stem cells uphold a delicate balance between quiescent and active states, which is crucial for tissue homeostasis. Whereas many signalling pathways that regulate epithelial stem cells have been reported, many regulators remain unidentified. MATERIALS AND METHODS: Flies were used to generate tissue-specific gene knockdown and gene knockout. qRT-PCR was used to assess the relative mRNA levels. Immunofluorescence was used to determine protein localization and expression patterns. Clonal analyses were used to observe the phenotype. RNA-seq was used to screen downstream mechanisms. RESULTS: Here, we report a member of the chloride channel family, ClC-c, which is specifically expressed in Drosophila intestinal stem/progenitor cells and regulates intestinal stem cell (ISC) proliferation under physiological conditions and upon tissue damage. Mechanistically, we found that the ISC loss induced by the depletion of ClC-c in intestinal stem/progenitor cells is due to inhibition of the EGFR signalling pathway. CONCLUSION: Our findings reveal an ISC-specific function of ClC-c in regulating stem cell maintenance and proliferation, thereby providing new insights into the functional links among the chloride channel family, ISC proliferation and tissue homeostasis.


Assuntos
Canais de Cloreto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Intestinos/citologia , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Apoptose/genética , Sequência de Bases , Proliferação de Células , Regulação para Baixo/genética , Endossomos/metabolismo , Mucosa Intestinal/citologia , Necrose , Regeneração , Proteínas rab5 de Ligação ao GTP/metabolismo
7.
Cell Rep ; 36(9): 109644, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469735

RESUMO

In holometabolous insects, metamorphic timing and body size are controlled by a neuroendocrine axis composed of the ecdysone-producing prothoracic gland (PG) and its presynaptic neurons (PGNs) producing PTTH. Although PTTH/Torso signaling is considered the primary mediator of metamorphic timing, recent studies indicate that other unidentified PGN-derived factors also affect timing. Here, we demonstrate that the receptor tyrosine kinases anaplastic lymphoma kinase (Alk) and PDGF and VEGF receptor-related (Pvr), function in coordination with PTTH/Torso signaling to regulate pupariation timing and body size. Both Alk and Pvr trigger Ras/Erk signaling in the PG to upregulate expression of ecdysone biosynthetic enzymes, while Alk also suppresses autophagy by activating phosphatidylinositol 3-kinase (PI3K)/Akt. The Alk ligand Jelly belly (Jeb) is produced by the PGNs and serves as a second PGN-derived tropic factor, while Pvr activation mainly relies on autocrine signaling by PG-derived Pvf2 and Pvf3. These findings illustrate that a combination of juxtacrine and autocrine signaling regulates metamorphic timing, the defining event of holometabolous development.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Glândulas Endócrinas/enzimologia , Metamorfose Biológica , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Animais Geneticamente Modificados , Comunicação Autócrina , Tamanho Corporal , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Ecdisona/metabolismo , Glândulas Endócrinas/embriologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Mutação , Receptores Proteína Tirosina Quinases/genética , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Crescimento do Endotélio Vascular/genética , Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
PLoS Genet ; 17(8): e1009738, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34411095

RESUMO

Activation of Ras signaling occurs in ~30% of human cancers. However, activated Ras alone is insufficient to produce malignancy. Thus, it is imperative to identify those genes cooperating with activated Ras in driving tumoral growth. In this work, we have identified a novel EGFR inhibitor, which we have named EGFRAP, for EGFR adaptor protein. Elimination of EGFRAP potentiates activated Ras-induced overgrowth in the Drosophila wing imaginal disc. We show that EGFRAP interacts physically with the phosphorylated form of EGFR via its SH2 domain. EGFRAP is expressed at high levels in regions of maximal EGFR/Ras pathway activity, such as at the presumptive wing margin. In addition, EGFRAP expression is up-regulated in conditions of oncogenic EGFR/Ras activation. Normal and oncogenic EGFR/Ras-mediated upregulation of EGRAP levels depend on the Notch pathway. We also find that elimination of EGFRAP does not affect overall organogenesis or viability. However, simultaneous downregulation of EGFRAP and its ortholog PVRAP results in defects associated with increased EGFR function. Based on these results, we propose that EGFRAP is a new negative regulator of the EGFR/Ras pathway, which, while being required redundantly for normal morphogenesis, behaves as an important modulator of EGFR/Ras-driven tissue hyperplasia. We suggest that the ability of EGFRAP to functionally inhibit the EGFR pathway in oncogenic cells results from the activation of a feedback loop leading to increase EGFRAP expression. This could act as a surveillance mechanism to prevent excessive EGFR activity and uncontrolled cell growth.


Assuntos
Receptores ErbB/antagonistas & inibidores , Genes ras/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Ciclo Celular , Proliferação de Células/genética , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes ras/fisiologia , Discos Imaginais/metabolismo , Morfogênese , Fosforilação , Receptores de Peptídeos de Invertebrados/antagonistas & inibidores , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais/genética , Proteínas ras/genética
9.
Dev Biol ; 478: 173-182, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245727

RESUMO

A complex network of transcription factor interactions propagates across the larval eye disc to establish columns of evenly-spaced R8 precursor cells, the founding cells of Drosophila ommatidia. After the recruitment of additional photoreceptors to each ommatidium, the surrounding cells are organized into their stereotypical pattern during pupal development. These support cells - comprised of pigment and cone cells - are patterned to encapsulate the photoreceptors and separate ommatidia with an hexagonal honeycomb lattice. Since the proteins and processes essential for correct eye patterning are conserved, elucidating how these function and change during Drosophila eye patterning can substantially advance our understanding of transcription factor and signaling networks, cytoskeletal structures, adhesion complexes, and the biophysical properties of complex tissues during their morphogenesis. Our understanding of many of these aspects of Drosophila eye patterning is largely descriptive. Many important questions, especially relating to the regulation and integration of cellular events, remain.


Assuntos
Olho Composto de Artrópodes/crescimento & desenvolvimento , Drosophila/crescimento & desenvolvimento , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal , Olho Composto de Artrópodes/citologia , Simulação por Computador , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Larva/crescimento & desenvolvimento , Morfogênese , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células Fotorreceptoras de Invertebrados/citologia , Pupa/crescimento & desenvolvimento , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais
10.
Elife ; 102021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34096503

RESUMO

RAS-like (RAL) GTPases function in Wnt signalling-dependent intestinal stem cell proliferation and regeneration. Whether RAL proteins work as canonical RAS effectors in the intestine and the mechanisms of how they contribute to tumourigenesis remain unclear. Here, we show that RAL GTPases are necessary and sufficient to activate EGFR/MAPK signalling in the intestine, via induction of EGFR internalisation. Knocking down Drosophila RalA from intestinal stem and progenitor cells leads to increased levels of plasma membrane-associated EGFR and decreased MAPK pathway activation. Importantly, in addition to influencing stem cell proliferation during damage-induced intestinal regeneration, this role of RAL GTPases impacts on EGFR-dependent tumourigenic growth in the intestine and in human mammary epithelium. However, the effect of oncogenic RAS in the intestine is independent from RAL function. Altogether, our results reveal previously unrecognised cellular and molecular contexts where RAL GTPases become essential mediators of adult tissue homeostasis and malignant transformation.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Receptores ErbB/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Células-Tronco/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endocitose , Receptores ErbB/genética , Feminino , Humanos , Hiperplasia , Mucosa Intestinal/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Glândulas Mamárias Humanas/enzimologia , Glândulas Mamárias Humanas/patologia , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Receptores de Peptídeos de Invertebrados/genética , Transdução de Sinais , Células-Tronco/patologia , Proteínas ral de Ligação ao GTP/genética
11.
Dev Biol ; 477: 133-144, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34044021

RESUMO

The Drosophila testis is a model organism stem cell niche in which two stem cell populations coordinate together to produce sperm; thus, these stem cells must be balanced in the niche. Merlin, a tumor-suppressor and human disease gene required for contact inhibition of proliferation, is known to limit the proliferation of the somatic cyst stem cells in the testis niche. Expanded encodes a protein that is structurally similar to Merlin in Drosophila, and is semi-redundant with Merlin in multiple tissues. We found that expanded depletion caused similar cyst lineage cell over-proliferation as observed with Merlin, and double mutants showed more severe phenotypes than either gene individually. Thus, these genes have partially redundant functions in the cyst lineage cells of this niche. We also expressed non-phosphorylatable constitutively "tumor suppressing" alleles of Merlin in cyst lineage cells, and surprisingly, we observed a similar cyst lineage over-proliferation phenotype. Merlin is known to impact multiple different signaling pathways to exert its effect on proliferation. We found that the Merlin loss of function phenotype was associated with an increase in MAPK/ERK signaling, consistent with Merlin's established role in transmembrane receptor inhibition. Constitutive Merlin displayed a reduction in both MAPK/ERK signaling and PI3K/Tor signaling. PI3K/Tor signaling is required for cyst cell differentiation, and inhibition of this pathway by Merlin activation phenocopied the Tor cyst lineage loss of function phenotype. Thus, Merlin impacts and integrates the activity of multiple signaling pathways in the testis niche. The ability of Merlin to dynamically change its activity via phosphorylation in response to local contact cues provides an intriguing mechanism whereby the signaling pathways that control these stem cells might be dynamically regulated in response to the division of a neighboring germ cell.


Assuntos
Células-Tronco Adultas/fisiologia , Proliferação de Células/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/citologia , Proteínas de Membrana/fisiologia , Neurofibromina 2/fisiologia , Transdução de Sinais , Testículo/citologia , Animais , Linhagem da Célula , Drosophila/embriologia , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Modelos Biológicos , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Testículo/embriologia
12.
Cell Death Dis ; 12(5): 491, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990549

RESUMO

Spermatogonia transit-amplifying (TA) divisions are crucial for the differentiation of germline stem cell daughters. However, the underlying mechanism is largely unknown. In the present study, we demonstrated that CG6015 was essential for spermatogonia TA-divisions and elongated spermatozoon development in Drosophila melanogaster. Spermatogonia deficient in CG6015 inhibited germline differentiation leading to the accumulation of undifferentiated cell populations. Transcriptome profiling using RNA sequencing indicated that CG6015 was involved in spermatogenesis, spermatid differentiation, and metabolic processes. Gene Set Enrichment Analysis (GSEA) revealed the relationship between CG6015 and the epidermal growth factor receptor (EGFR) signaling pathway. Unexpectedly, we discovered that phosphorylated extracellular regulated kinase (dpERK) signals were activated in germline stem cell (GSC)-like cells after reduction of CG6015 in spermatogonia. Moreover, Downstream of raf1 (Dsor1), a key downstream target of EGFR, mimicked the phenotype of CG6015, and germline dpERK signals were activated in spermatogonia of Dsor1 RNAi testes. Together, these findings revealed a potential regulatory mechanism of CG6015 via EGFR signaling during spermatogonia TA-divisions in Drosophila testes.


Assuntos
Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Espermatogônias/fisiologia , Testículo/metabolismo , Animais , Diferenciação Celular/fisiologia , Drosophila , Masculino
13.
Development ; 147(15)2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32680934

RESUMO

To bridge the gap between qualitative and quantitative analyses of the epidermal growth factor receptor (EGFR) in tissues, we generated an sfGFP-tagged EGF receptor (EGFR-sfGFP) in Drosophila The homozygous fly appears similar to wild type with EGFR expression and activation patterns that are consistent with previous reports in the ovary, early embryo, and imaginal discs. Using ELISA, we quantified an average of 1100, 6200 and 2500 receptors per follicle cell (FC) at stages 8/9, 10 and ≥11 of oogenesis, respectively. Interestingly, the spatial localization of the EGFR to the apical side of the FCs at early stages depended on the TGFα-like ligand Gurken. At later stages, EGFR localized to basolateral positions of the FCs. Finally, we followed the endosomal localization of EGFR in the FCs. The EGFR colocalized with the late endosome, but no significant colocalization of the receptor was found with the early endosome. The EGFR-sfGFP fly is an exciting new resource for studying cellular localization and regulation of EGFR in tissues.


Assuntos
Proteínas de Drosophila/metabolismo , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Folículo Ovariano/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Endossomos/genética , Endossomos/metabolismo , Células Epiteliais/citologia , Epitélio/metabolismo , Receptores ErbB/genética , Feminino , Folículo Ovariano/citologia , Receptores de Peptídeos de Invertebrados/genética , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo
14.
PLoS Genet ; 16(6): e1008863, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559195

RESUMO

Inactivation of the Rb tumor suppressor causes context-dependent increases in cell proliferation or cell death. In a genetic screen for factors that promoted Rb mutant cell death in Drosophila, we identified Psid, a regulatory subunit of N-terminal acetyltransferase B (NatB). We showed that NatB subunits were required for elevated EGFR/MAPK signaling and Rb mutant cell survival. We showed that NatB regulates the posttranscriptional levels of the highly conserved pathway components Grb2/Drk, MAPK, and PP2AC but not that of the less conserved Sprouty. Interestingly, NatB increased the levels of positive pathway components Grb2/Drk and MAPK while decreased the levels of negative pathway component PP2AC, which were mediated by the distinct N-end rule branch E3 ubiquitin ligases Ubr4 and Cnot4, respectively. These results suggest a novel mechanism by which NatB and N-end rule pathways modulate EGFR/MAPK signaling by inversely regulating the levels of multiple conserved positive and negative pathway components. As inactivation of Psid blocked EGFR signaling-dependent tumor growth, this study raises the possibility that NatB is potentially a novel therapeutic target for cancers dependent on deregulated EGFR/Ras signaling.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Acetiltransferase N-Terminal B/metabolismo , Neoplasias/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Alelos , Animais , Animais Geneticamente Modificados , Apoptose/genética , Proteínas Sanguíneas/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Acetiltransferase N-Terminal B/genética , Neoplasias/patologia , Proteína do Retinoblastoma/genética , Mutações Sintéticas Letais , Fatores de Transcrição/genética
15.
Dis Model Mech ; 13(6)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32461236

RESUMO

Aldosterone is produced by the mammalian adrenal cortex to modulate blood pressure and fluid balance; however, excessive, prolonged aldosterone promotes fibrosis and kidney failure. How aldosterone triggers disease may involve actions independent of its canonical mineralocorticoid receptor. Here, we present a Drosophila model of renal pathology caused by excess extracellular matrix formation, stimulated by exogenous aldosterone and by insect ecdysone. Chronic administration of aldosterone or ecdysone induces expression and accumulation of collagen-like Pericardin in adult nephrocytes - podocyte-like cells that filter circulating hemolymph. Excess Pericardin deposition disrupts nephrocyte (glomerular) filtration and causes proteinuria in Drosophila, hallmarks of mammalian kidney failure. Steroid-induced Pericardin production arises from cardiomyocytes associated with nephrocytes, potentially reflecting an analogous role of mammalian myofibroblasts in fibrotic disease. Remarkably, the canonical ecdysteroid nuclear hormone receptor, Ecdysone receptor (EcR), is not required for aldosterone or ecdysone to stimulate Pericardin production or associated renal pathology. Instead, these hormones require a cardiomyocyte-associated G-protein-coupled receptor, Dopamine-EcR (DopEcR), a membrane-associated receptor previously characterized in the fly brain to affect behavior. DopEcR in the brain is known to affect behavior through interactions with the Drosophila Epidermal growth factor receptor (Egfr), referred to as dEGFR. Here, we find that the steroids ecdysone and aldosterone require dEGFR in cardiomyocytes to induce fibrosis of the cardiac-renal system. In addition, endogenous ecdysone that becomes elevated with age is found to foster age-associated fibrosis, and to require both cardiomyocyte DopEcR and dEGFR. This Drosophila renal disease model reveals a novel signaling pathway through which steroids may modulate mammalian fibrosis through potential orthologs of DopEcR.


Assuntos
Drosophila melanogaster/metabolismo , Matriz Extracelular/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Esteroides/metabolismo , Fatores Etários , Aldosterona , Animais , Animais Geneticamente Modificados , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Ecdisona , Receptores ErbB/genética , Receptores ErbB/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/patologia , Fibrose , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/patologia , Miócitos Cardíacos/patologia , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Receptores de Esteroides/genética , Transdução de Sinais
16.
Autophagy ; 16(6): 1145-1147, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32150491

RESUMO

In contrast to stress-induced macroautophagy/autophagy that happens during nutrient deprivation and other environmental challenges, basal autophagy is thought to be an important mechanism that cells utilize for homeostatic purposes. For instance, basal autophagy is used to recycle damaged and malfunctioning organelles and proteins to provide the building blocks for the generation of new ones throughout life. In addition, specialized autophagic processes, such as lipophagy, the autophagy-induced breakdown of lipid droplets (LDs), and glycophagy (breakdown of glycogen), are employed to maintain proper energy levels in the cell. The importance of autophagy in the regulation of stem cell behavior has been the focus of recent studies. However, the upstream signals that control autophagic activity in stem cells and the precise role of autophagy in stem cells are only starting to be elucidated. In a recent publication, we described how the Egfr (epidermal growth factor receptor) pathway stimulates basal autophagy to support the maintenance of somatic cyst stem cells (CySCs) and to control lipid levels in the Drosophila testis.


Assuntos
Células-Tronco Adultas , Proteínas de Drosophila , Células-Tronco Adultas/metabolismo , Animais , Autofagia , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Homeostase , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Masculino , Receptores de Peptídeos de Invertebrados/metabolismo , Testículo/metabolismo
17.
Curr Biol ; 30(8): 1547-1554.e4, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32220314

RESUMO

Understanding the mechanisms that determine final body size of animals is a central question in biology. In animals with determinate growth, such as mammals or insects, the size at which the immature organism transforms into the adult defines the final body size, as adult individuals do not grow [1]. In Drosophila, the growth period ends when the immature larva undergoes the metamorphic transition to develop the mature adult [2]. This metamorphic transition is triggered by a sharp increase of the steroid ecdysone, synthetized in the prothoracic gland (PG), that occurs at the end of the third instar larvae (L3) [3-6]. It is widely accepted that ecdysone biosynthesis in Drosophila is mainly induced by the activation of tyrosine kinase (RTK) Torso by the prothoracicotropic hormone (Ptth) produced into two pairs of neurosecretory cells that project their axons onto the PG [7, 8]. However, the fact that neither Ptth nor torso-null mutant animals arrest larval development but only present a delay in the larva-pupa transition [9-11] mandates for a reconsideration of the conventional model. Here, we show that Egfr signaling, rather than Ptth/torso, is the major contributor of ecdysone biosynthesis in Drosophila. We found that Egfr signaling is activated in the PG in an autocrine mode by the EGF ligands spitz and vein, which in turn are regulated by the levels of ecdysone. This regulatory positive feedback loop ensures the production of ecdysone to trigger metamorphosis by a progressive Egfr-dependent activation of MAPK/ERK pathway, thus determining the animal final body size.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ecdisona/biossíntese , Receptores ErbB/genética , Receptores de Peptídeos de Invertebrados/genética , Transdução de Sinais/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo
18.
Cell Rep ; 30(4): 1101-1116.e5, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31995752

RESUMO

Although typically upregulated upon cellular stress, autophagy can also be utilized under homeostatic conditions as a quality control mechanism or in response to developmental cues. Here, we report that autophagy is required for the maintenance of somatic cyst stem cells (CySCs) in the Drosophila testis. Disruption of autophagy in CySCs and early cyst cells (CCs) by the depletion of autophagy-related (Atg) genes reduced early CC numbers and affected CC function, resembling decreased epidermal growth factor receptor (EGFR) signaling. Indeed, our data indicate that EGFR acts to stimulate autophagy to preserve early CC function, whereas target of rapamycin (TOR) negatively regulates autophagy in the differentiating CCs. Finally, we show that the EGFR-mediated stimulation of autophagy regulates lipid levels in CySCs and CCs. These results demonstrate a key role for autophagy in regulating somatic stem cell behavior and tissue homeostasis by integrating cues from both the EGFR and TOR signaling pathways to control lipid metabolism.


Assuntos
Autofagia/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Receptores ErbB/metabolismo , Células Germinativas/metabolismo , Metabolismo dos Lipídeos/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Células-Tronco/metabolismo , Animais , Animais Geneticamente Modificados , Autofagossomos/metabolismo , Diferenciação Celular/genética , Proteínas de Drosophila/genética , Receptores ErbB/genética , Técnicas de Silenciamento de Genes , Células Germinativas/crescimento & desenvolvimento , Homeostase , Sistema de Sinalização das MAP Quinases/genética , Masculino , Interferência de RNA , Receptores de Peptídeos de Invertebrados/genética , Serina-Treonina Quinases TOR/metabolismo , Testículo/citologia , Testículo/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
19.
Annu Rev Genet ; 53: 1-18, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31794267

RESUMO

In Drosophila development, the axes of the egg and future embryo are established during oogenesis. To learn about the underlying genetic and molecular pathways that lead to axis formation, I conducted a large-scale genetic screen at the beginning of my independent career. This led to the eventual understanding that both anterior-posterior and dorsal-ventral pattern information is transmitted from the oocyte to the surrounding follicle cells and in turn from the follicle cells back to the oocyte. How I came to conduct this screen and what further insights were gained by studying the mutants isolated in the screen are the topics of this autobiographical article.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Genética/história , Óvulo/fisiologia , Animais , Padronização Corporal/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , História do Século XX , História do Século XXI , Masculino , Oócitos/fisiologia , Ovário/crescimento & desenvolvimento , Ovário/fisiologia , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Análise para Determinação do Sexo , Processos de Determinação Sexual , Estados Unidos
20.
Sci Rep ; 9(1): 19695, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873089

RESUMO

Mitochondria are essential organelles that have recently emerged as hubs for several metabolic and signaling pathways in the cell. Mitochondrial morphology is regulated by constant fusion and fission events to maintain a functional mitochondrial network and to remodel the mitochondrial network in response to external stimuli. Although the role of mitochondria in later stages of spermatogenesis has been investigated in depth, the role of mitochondrial dynamics in regulating early germ cell behavior is relatively less-well understood. We previously demonstrated that mitochondrial fusion is required for germline stem cell (GSC) maintenance in the Drosophila testis. Here, we show that mitochondrial fission is also important for regulating the maintenance of early germ cells in larval testes. Inhibition of Drp1 in early germ cells resulted in the loss of GSCs and spermatogonia due to the accumulation of reactive oxygen species (ROS) and activation of the EGFR pathway in adjacent somatic cyst cells. EGFR activation contributed to premature germ cell differentiation. Our data provide insights into how mitochondrial dynamics can impact germ cell maintenance and differentiation via distinct mechanisms throughout development.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Dinâmica Mitocondrial/fisiologia , Receptores de Peptídeos de Invertebrados/metabolismo , Espermatozoides/metabolismo , Testículo/citologia , Testículo/metabolismo , Células-Tronco Germinativas Adultas/citologia , Células-Tronco Germinativas Adultas/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Proteínas de Ligação ao GTP/deficiência , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Larva/citologia , Larva/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Receptores de Peptídeos de Invertebrados/genética , Transdução de Sinais , Espermatogênese/fisiologia , Espermatogônias/citologia , Espermatogônias/metabolismo , Espermatozoides/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA